Video « The Kjeldahl method – Demonstration »

Time	Text
00 :09	The first step is to prepare the sample. It requires to use concentrated sulphuric acid, so work under a hood, wear the strong acid resistant gloves and mind the safety glasses.
00 :30	You will have to weigh your sample. If the sample is liquid, you can directly weigh it in the
	beaker. But if the sample is solid, you have to crush it first, with the adapted grinder
	according to the type of sample. Then, you can put your sample into the mineralisation
	tube which will be used for the second step.
00 :53	In order to transform the protein, you will have to add a Kjeldahl catalyst during this
	preparation step. This catalyst allows to accelerate the mineralisation reaction.
01 :06	To avoid any foam formation during the mineralisation reaction, mind to add an anti- foam pill.
01 :18	Finally, you can add very carefully 10 mL of concentrated sulphuric acid in the Kjeldahl tube.
01 :48	Then, you can put your tube in the mineralisation rack and bring your sample to the mineralizing device.
02 :02	After the preparation of your sample, you put it in the mineralizing device. Mind to check
	if there are as much samples as free spaces in the block. Then, you can put down the
	smoke collector on your tubes and you check that the system is well sealed in order to
	collect all the smoke which will be formed during the mineralisation reaction.
02 :27	You can turn on the smoke collector and open the water valve.
02 :33	Everything is now ready for the mineralisation. The mineralizing device can be turned on.
	First, let's set the temperature around 150 °C in order to progressively increase the
	temperature. After 10 minutes, you can rise the temperature to 250°C. Again, you have
	which is 250 °C, and leave it for 5 hours
03.07	Mind to regularly check if nothing goes wrong during the mineralisation
03.07	After 5 hours a ring will inform you that the mineralisation is over. You can shut down
05.11	the system at this moment, but leave the smoke collector and the water on, in order to
	let the system cooling down for 30 minutes/1 hour.
03 :33	Once the system is cooled down, you can stop the water. Take off the mineralisation rack
	and take back your sample.
03 :52	Now that the sample is mineralized, the protein nitrogen is now transformed into
	mineral nitrogen. You can get this nitrogen as ammonium sulphate. The aim of this
	distillation step is to transform the nitrogen from NH ₄ ⁺ to NH ₃ .
04 :12	For that, you can put your sample into the distiller by checking if the system is well
	sealed, so be careful at the top of the tube.
04 :24	Then, the sodium hydroxide will be injected into the sample. This NaOH will transform
	NH ₄ ⁺ into NH ₃ . The ammoniac vapours will be condensed and the ammonia will be
	trapped into this Erlenmeyer filled with 25 mL of 0.1 mol/L hydrochloric acid with methyl
	tube is well immersed in the hydrochleric acid solution to avoid any loss of the ammonia
05.02	Refore starting the distillation, it is important to check if there is enough sodium
05.02	hydroxide ready to be injected into the system. On the side of the device, you can check
	if the level in the tank is sufficiently high. Also, to ensure a good condensation in the
	condenser, you need to open the water valve. The water will flow in the condenser when
	you will start the distiller.
05 :27	Then, you can shut the door of the device and turn it on.
05 :36	To inject the 50 mL of sodium hydroxide necessary for the distillation, you have to push
05.52	To start the distillation, you have to push the steam button which will start the besting
05:53	To start the distillation, you have to push the steam button which will start the heating.

06 :13	At the ring, the distillation stops and you can open the door. Let the system cooling down
	before taking on the sample.
06 :26	So, now your ammonia is trapped as NH4 ⁺ and you have to titrate the excess of
	hydrochloric acid which did not trap the ammonia. To do that, you will perform a
	titration with 0.1 mol/L sodium hydroxide.
06 :45	Once the system is cooled down, you can take the Erlenmeyer back and, as I explained
	earlier, you can start the titration of the excess of HCI. Concerning the mineralisation
	tube, once it is cold, you can throw its content into the base tank.
07 :06	Now the titration of the excess of HCl with 0.1 mol/L sodium hydroxide which has been
	previously put in the burette can begin. The NaOH is added drop by drop.
07 :33	Here you can observe the switch in your indicator, which is the methyl red. It means that
	all the HCl has been neutralised by the NaOH and so, only water and NaCl are left.
07 :46	With this titration, you are able to know the quantity of excess HCl which did not trap the
	ammonia. Moreover, you have done a blank sample without any product, which you
	have also put in the distiller, and which gives you by titration the total quantity of HCl.
	Therefore, by making the difference between the blank and the sample, you will get the
	quantity of HCl which has reacted and is directly proportional to the quantity of trapped
	ammonia, so to the quantity of nitrogen in your sample.