Vidéo « Méthode de Kjeldahl – Théorie »

	Texte
00 :09	Bonjour. Nous allons présenter le dosage de l'azote total par la méthode de Kjeldahl.
	Dans notre cas, cette méthode nous permettra avant tout de déterminer la teneur en
	protéines dans un bioproduit.
00 :19	Quand on parle de bioproduit, ça veut dire que vous pouvez appliquer cette méthode soit
	à des aliments (solides ou liquides), soit à des ingrédients (extraits liquides, extraits
	pâteux, poudres), soit directement sur des matières premières, animales ou végétales,
	comme des céréales par exemple.
00 :35	Simplement, si vous travaillez avec des éléments solides, pensez préalablement à broyer
	vos échantillons. Sur quel principe repose cette méthode ?
00 :50	En fait, les composés organiques qui contiennent de l'azote, à savoir les protéines et dans
	certaines matrices, les acides nucléiques, vont être décomposés à chaud sous l'action
	d'acide sulfurique et d'un catalyseur. Ce catalyseur contient du sulfate de potassium qui
	permet d'augmenter la température d'ébullition de l'acide sulfurique, mais également du
	sulfate de cuivre qui lui va directement agir comme catalyseur de la réaction.
01 :13	Donc l'azote organique va donner quantitativement du sulfate d'ammonium, comme
	vous pouvez le voir sur cette réaction, appelée étape de minéralisation.
01 :21	Une seconde étape au cours de laquelle l'ammoniac va être déplacé de son sel par de la
	soude puis distillé par entraînement à la vapeur d'eau et recueilli dans une quantité
	connue d'acide chlorhydrique que l'on a pris soin de mettre en excès. C'est ce qu'on
	appelle l'étape de distillation.
01 :41	Enfin, l'acide chlorhydrique en excès, qui n'a pas servi à piéger l'ammoniac, va être dosé
	en retour par de la soude.
01 :49	Comment va-t-on faire pour calculer la teneur en protéines dans un échantillon ? Vous
	allez réaliser en parallèle deux types d'échantillons :
	- Un échantillon témoin dans lequel vous ne mettez pas votre bioproduit
02.06	- Un échantillon dans lequel vous ajoutez votre bioproduit
02 :06	Que va-t-il se passer ? Dans votre échantillon contenant le bioproduit, l'azote organique
	va être transformé en ammonium, puis en ammoniac, et cet ammoniac va être piégé par
02.24	l'HCl. Donc on aura accès par le dosage à l'HCl en excès dans votre échantillon.
02 :24	Dans votre échantillon témoin, vous n'aurez pas d'azote organique, donc au final, vous
	garderez la totalité de votre HCl. Par différence entre le témoin et le bioproduit, vous
02 :47	aurez HCl total – HCl en excès, ce qui vous donnera le nombre de moles d'HCl qui a réagi,
	c'est à dire le nombre de moles d'HCl qui a servi à piéger l'ammoniac.
02 .47	Comment remonter à la teneur en azote puis à la teneur en protéines ? Vous voyez d'après les réactions qu'une mole d'ammoniac provient d'un ammonium, qui provient
	lui-même d'un azote organique. Vous êtes donc capable de remonter au nombre de
	moles d'azote organique et, par l'intermédiaire de la masse molaire de l'azote, remonter
	à la masse d'azote pour une masse donnée de bioproduit.
03 :11	Comment transformer cette masse d'azote en masse de protéines ? Vous allez considérer
03 .11	qu'en moyenne, dans une protéine, on aura 16% d'azote. Donc vous allez multiplier votre
	masse d'azote, pour une masse donnée de bioproduit, par 100 et la diviser par 16, donc
	ça revient à multiplier par le facteur de Kjeldahl, 6,25.
03 :31	Vous avez possibilité, selon les matrices, si vous connaissez précisément les teneurs en
JJ .JI	azote dans vos protéines, d'ajuster ce facteur et de l'adapter au mieux à la matrice dans
	laquelle vous faites le dosage.
03 :41	Faut-il disposer d'un matériel spécifique pour réaliser cette méthode ? Oui.
03.41	Comme vous le verrez dans la démonstration qui va suivre, vous aurez besoin d'utiliser un
0347	minéralisateur et un distillateur spécifiques pour cette méthode.
03 :55	Par ailleurs, c'est une méthode au cours de laquelle vous allez manipuler de l'acide

Vidéo « Méthode de Kjeldahl – Théorie »

(blouse, lunettes de sécurité, gants), mais également avec des protections collectives
(hotte, sorbonne).
C'est parti pour la démonstration.